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Effects of Time-Variant Exposure on Toxic
Substance Response
by Paul F. Morrison*

Sources of time-variant exposure to toxic substances are identified and examined for their effects on
the estimation of response. It is shown that only time-averaged target tissue concentrations are required
to obtain rigorous risk estimates from the one-hit and multihit models. In contrast, detailed concentration
histories need to be retained throughout analyses involving two-event models with intermediate-stage
clonal growth advantage (clonal two-stage) and multistage models. Cumulative incidence ratios, based on
the exact to time-averaged treatment of concentration time dependencies, are evaluated for substances
whose toxic responses exhibit moderate (arsenic) and strong (ethylene dibromide) dependence on time of
actual exposure. These ratios reveal that time-averaged dose approximations may lead to several orders
of magnitude error in both the multistage and clonal two-stage models if exposure periods are short, and
that 3.4-fold (arsenic) and 8-fold (ethylene dibromide) errors still exist even when an actual two-thirds
lifetime exposure is averaged over a full lifetime. Finally, the effects of time-variant exposure on risk
estimation due to migration and birth-death in an epidemiological setting are examined. A residence time
distribution calculation shows that, if these effects are ignored for a population orally exposed to arsenic
and characterized by an out-migration rate in excess of 5%/yr, response errors will exceed an order of
magnitude.

Introduction
The probability that an individual will exhibit a toxic

end point following exposure to a toxic substance is
usually estimated either from the responses of experi-
mental animals or from humans exposed to the sub-
stance in an epidemiological setting. For ease of com-
putation, these animals or humans are often assumed
to receive a constant dose rate over the exposure period.
However, in virtually all epidemiological settings and
in many animal experiments, this condition is not sat-
isfied. As a result, time-variant dose is often time av-

eraged to provide the constant dose rate needed for
simple computation. This procedure may or may not
lead to substantial error in estimating an individual's
probability of response and, hence, it requires exami-
nation.

Previous investigators have addressed the role of
time-dependent dosage in specific response models.
Whittemore and Keller (1) presented general expres-
sions for incidence rates derived from the multistage
model when dosage was time-dependent, as well as par-
ticular solutions when a constant dose rate was admin-
istered from birth to an arbitrary time. They applied
these step solutions to the analysis of tumor incidence
data from mice skin-painted with benzpyrene (2). Day
and Brown (3) provided additional multistage incidence
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expressions for step-type dosage schedules when ex-
posure occurred late in life. Whittemore and Keller (1)
also presented a formal solution for including time-de-
pendent dosing in the modified multistage models of
Armitage and Doll (4) and Fisher (5), in which inter-
mediate stage cells were allowed to grow more rapidly
than normal cells, but they did not exercise these models
over a range of specific time-dependent schedules.
More recently, Crump and Howe (6) developed so-

lutions for cumulative incidence predicted by the mul-
tistage model when dosage was time-dependent. Their
method was general in the sense that it held for dosage
patterns describable as a superposition of square wave
forms. Since there was no restriction on the number of
square waves superimposed, theoretically, any time-
dependent dosage function could be described to as high
a degree of approximation as desired.

This report complements earlier work by discussing
the various sources of time-variant exposure, identi-
fying models that yield rigorous response estimates
from time-averaged doses, further identifying error
patterns in other model estimates introduced by the use
averaged-dose approximations, and assessing the mag-
nitude of migration-related effects in epidemiological
response. The dose-response models considered are the
one-hit, multihit, multistage, Weibull, and clonal two-
stage [modified multistage of Armitage and Doll (4)]
models. The principal toxic end point under consider-
ation will be cancer, but a few comments will also be
made about reproductive toxicity.
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Sources of Time-Variant Exposure
The response induced by a toxic agent ultimately

depends on the exposure to this substance or one of its
metabolites at the target tissue. Time dependence in
this exposure may thus arise either from nonconstant
dosing at the level of the whole organism or from phar-
macokinetic transients at the tissue level resulting from
toxic substance distribution and metabolism. A common
source of exposure variation at the whole organism level
is a time-dependent administration schedule in animal
experiments. This often results from alterations
imposed on an initial schedule during the course of an
experiment, as, for example, when excessive mortality
occurs in the animal population and the dose level must
be reduced. Other common sources of exposure time
dependence at the organism level include variable
release patterns of toxic agents in environmental expo-
sure and variable exposure in an epidemiological setting
due to people migrating into and out of a geographical
region.

Pharmacokinetic events may occur over a wide range
of time scales and are thus a source of time-dependent
exposure, yet the longest of these scales is often too
short to warrant formal inclusion of pharmacokinetic
transients in dose-response analysis, particularly in car-
cinogenesis studies. Hydrophilic substances are typi-
cally cleared quite rapidly by the body with plasma half-
times on the order of a few hours. Hydrophobic mate-
rials may be characterized by larger half-times due to
their high retention in fatty tissues. However, even an
extremely fat-soluble species may be characterized by
a half-life that is long by pharmacokinetic standards,
but is still short compared to the length of continuous
administration often employed in cancer animal exper-
iments, periods of 1 year or more. For example, the
late plasma half-life of 2,4,5,2',4',5'-hexachlorobiphenyl
in the dog is 19 days (7), a value far larger than encoun-
tered with most hydrophilic substances but much less
than a year. Hence, under conditions of nearly contin-
uous administration (e.g. daily gavage), many if not
most substances will reach steady-state tissue distri-
butions, and only pharmacokinetic steady-state concen-
trations need be employed in dose-response calcula-
tions.
On the other hand, situations do exist in which non-

steady-state pharmacokinetics play a significant role in
determining time-dependent exposure. For example, in
noncanine species such as the mouse, rat, and monkey,
2,4,5,2', 4', 5'-hexachlorobiphenyl is characterized by
extremely long time constants (7). The compound is
metabolized very slowly in these species and this, cou-
pled with its high fat solubility, allows it to continually
accumulate in the body over periods of administration
comparable to animal lifetimes. Thus, the pharmaco-
kinetics of this chemical species remain time-dependent
over most of the course of an animal experiment.
Another situation in which time-dependent pharma-

cokinetics may play a major role is in the area of repro-
ductive toxicity testing. In this case, reproduction tox-

icities such as the occurence of malformations are
assessed after relatively short periods of toxic agent
administration, for example over days 6 to 15 of ges-
tation in the mouse. For many agents, this short admin-
istration period brings the time scale for induction of
reproductive lesions much closer to the scale of phar-
macokinetic transients and raises the possibility that
their description must be retained throughout any sub-
sequent dose-response analysis.

Concentration Time-Dependency in
Dose-Response Models
The detailed accounting of the dose dynamics arising

from the sources oftime-variance just presented is high-
ly dependent upon the response model chosen to rep-
resent toxic response. We will show that the one-hit
and multihit models allow a rigorous estimation of risk
(incidence or cumulative incidence of response) from
only the time-averaged target tissue concentration,
while the multistage and clonal two-stage models gen-
erally require that detailed time-dependency be
retained throughout risk estimation. Numerical esti-
mates of the magnitude of these time-dependent effects
will be presented for carcinogenic end points attributed
to compounds whose response exhibits an intermediate
(arsenic) and strong (ethylene dibromide) dependence
on exposure time.

One-Hit Model
In this model, the probability X(t) for irreversible

transition of a cell from a normal to malignant state is
taken as proportional to the target tissue concentration
c(t), i.e., X(t) = a + b c(t). From Whittemore and Keller
(1), the differential equation for the probability of a cell
being normal at time t is

dpo(t)ldt = - X(t)po(t) Po(O) = 1 [1]
Solving this equation for po, and noting that Pi = 1 -
po is the probability of this cell having undergone the
toxic transition, one obtains

rt
p1(t) = 1 - exp( -at - b c(t)dt)

Because the time-averaged dose <c> is defined as the
integral in this expression divided by t,

p1(t) = 1 - exp(-at - b < c > t) [2]
Thus, rigorous toxicity estimates made from the one-
hit model only require knowledge ofthe averaged target
tissue dose.

Multihit Model
This model (8) assumes that k irreversible alterations,

each with an identical transition probability X(t), must
occur in an individual before a toxic state is reached.
Differential equations for the probability of observing
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a normal individual (po) and individuals with n-hits (Pn)
are of the form of Equation 1 and

dpn(t)/dt = X(t)pn l(t) - X(t)pn(t) Pn(O) = 0

Recursive solution ofthese equations allows one to write
an expression for the probability P of observing a toxic
response consisting of k or more hits, i.e.,

X
1 k(t)

= Pn= 1 x exdx
n=k I(J)

where
t

A(t) = X(t)dt = at + b < c > t [3]

Because P depends only on the averaged target tissue
concentration through the A(t) limit, the multihit model,
like the one-hit, does not depend on the detailed time
pattern of target tissue dosing.

Multistage Model
This model (9) assumes that k irreversible hits must

occur in the order 0,1,. ... ,k - 1 with the transition
probability for each hit being Xj(t) = ai + bi c(t). No
cells except the final stage cells are assumed to undergo
growth. The general differential equations for this mod-
el have been presented in Whittemore and Keller (1).
Ignoring the time for growth of tumor to detectable
size, the cumulative incidence of tumors P derived for
this model is

- t st2
P = 1- exp -NJ Xi-1(ti_1) f*J1(t)

rti
O o(to)dtodt . . . dti 1 [4]

where N is the number of cells in a target organ. This
multiple integral results from the model's requirement
that the hits occur in a particular sequence, and its form
generally does not allow the cumulative incidence of
tumors to be expressed in terms of <c>. Thus, detailed
time-dependence of the target tissue concentration
must be taken into account.
Whittemore and Keller (1) and Day and Brown (3)

evaluated P for special cases of step function exposure.
Crump and Howe (6) evaluated it for the more general
dose pattern of superimposed square waves, provided
that the toxic agent acts at no more than two stages.
Their method may be easily extended to other dosage
patterns such as the exponential decay functions
encountered in linear pharmacokinetics. Solutions
involve summations over incomplete gamma functions.
To demonstrate the magnitude of time-dependent

concentration effects relative to their treatment as time-
averaged quantities, we evaluate the ratio R of the life-
time cumulative incidence, computed for various time-

dependent tissue concentrations, to the corresponding
averaged concentration value. Thus,

P[c(t)]R P=
P[<C>] [5]

The farther R is from unity, the poorer the dose-aver-
aged concentration approach. R is identically 1 for the
one-hit and multihit models, as tabulated in Table 1.
We have computed multistage R values appropriate

to skin cancer induction by oral exposure to arsenic (10)
[presumably present as arsenate/arsenite in drinking
water (11)] and to induction of carcinoma of the rat
forestomach by ethylene dibromide (12), and tabulated
the results in Tables 1 and 2. Previous work has shown
that arsenical skin cancer prevalence exhibits a 3.88 +
0.33 Weibull power dependence on exposure time begin-
ning at birth, a figure insignificantly different from 4
(13,14). Ethylene dibromide, on the other hand, exhibits
a stronger dependence on this exposure time, the cor-
responding power being 6 (6). Hence, R values for these

Table 1. Ratio of actual to dose-averaged lifetime-response for
various models.a

Exposure initiation timeb
Model Early Late
One-hit 1 1
Multihit 1 1
Multistage

Arsenicc 2.4 1/27
Ethylene dibromided 3.0 1/250

Clonal two-stagee
Dose, ppm:

0 2.5 1/18
0.15 2.4 1/16
1.20 1.8 1/11
5.00 1.04 1/5.8
20.0 1 1/1.4
Infinity 1 1

a Fixed exposure interval of one-third lifetime.
b Early, initiation time at birth; late, initiation time two-thirds of

way through life.
'Arsenic multistage assumes four stages, the first being dose relat-

ed.
d Ethylene dibromide assumes six stages, the first being dose relat-

ed.
eThis model is applied to arsenic exposure, assuming that both

stages are dose related.

Table 2. Ratio of actual to dose-averaged response: Effect of
exposure interval.'

Exposure Ratio (R)
Length of exposure initiation timeb EDBC As

Bolusd 0.0 6
0.57 1/11
0.86 1/2500

One-third lifetime 0.0 3 2.4
0.67 1/250 1/27

Two-thirds lifetime 0.0 1.5 1.5
0.33 1/8 1/3.4

a Multistage models.
b Units of fractional lifetime.
'Ethylene dibromide.
d From (6).
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chemical species provide examples of moderate and
strong dependence ofresponse on time-dependent expo-
sure effects.
The cumulative incidences comprising R, P[c(t)], and

P[<c>] were computed for arsenic and ethylene
dibromide from Equation 4 when only the first stage of
the four or six involved is affected by toxic agent (i.e.,
only b1 # 0). Earlier work showed that the assumption
of a single affected stage led to good fits of experimental
response data (6,13). The multistage R values in Tables
1 and 2 were computed for two types of dosage admin-
istration patterns. For simplicity, tissue pharmacoki-
netics were assumed to always be at steady state with
the current rate of administration. Table 1 presents
values for a fixed exposure period of one-third lifetime,
with this period occurring either during the first third
of life (early exposure) or the last third (late exposure).
Both P [c(t)] and P[<c>] were evaluated from equations
of Crump and Howe (6) where c(t) was the square wave

c(t) = tO°
and

S -' t <S2
otherwise

P[c(t)] = 1 - exp[ - qotk - q,Zlk(t)]
[0

Zlk = Co (t - Sl)
(t - Sl)k _ (t - S2)k

t < s,
s t < S2
S2 < t

[Multistage ratios similar to our R values were com-
puted in (6) for ethylene dibromide but, generally, ref-
erence probabilities other than P[<c>] were reported.]
The multistage results for arsenic show that inclusion

of dose time-dependence leads to a 2.4-fold higher esti-
mate of cumulative incidence during early exposure
than time-averaged doses, and to a 27-fold lower esti-
mate during late exposure. By contrast, the time-depen-
dent cumulative incidence of ethylene dibromide esti-
mated for late exposure is about 10-fold again lower,
i.e., 250-fold lower than the averaged-dose result. This
is a straightforward reflection of ethylene dibromide's
greater dependence of response on exposure time. As
observed by previous investigators in related analyses,
the much smaller R values for late exposure are a con-
sequence of assuming that only the first stage is affected
by carcinogen; the time-averaged dose approach
improperly provides for large dosing early in life, allow-
ing many cells to undergo early first-stage transition
and to have much more time to reach the final trans-
formation stage than would be allowed by the actual
dosage pattern.

Table 1 presents examples of the magnitude of time-
dependent dosage effects for a fixed exposure period
(one-third of a lifetime). These multistage results are
expanded in Table 2 to examine the effects of varying
the exposure period. As expected, the late bolus results
for ethylene dibromide (6) show the most extreme diver-
gence of time-dependent and time-averaged doses,

nearly three orders of magnitude when the bolus is giv-
en 0.86 through a lifetime. The other R values in Table
2 demonstrate that this divergence decreases as the
exposure time is lengthened, but that over a two-order
of magnitude difference still remains for late one-third
lifetime exposure and nearly an order of magnitude for
two-thirds of a lifetime exposure. For the arsenic exam-
ple, the effects are less dramatic due to this agent's
weaker dependence of response on exposure time, but
they do not drop to less than an order of magnitude
until (late) exposure lengthens to two-thirds ofa lifetime
or more. Hence, time-dependent concentration effects
may be extremely important in estimating multistage
responses, even when exposure periods are large frac-
tions of a lifetime.

Clonal Two-Stage Model
This modified multistage model (4) assumes that toxic

response occurs after two irreversible stages and that
cells of intermediate stage may proliferate to advantage
over normal cells. This model is the deterministic limit
of the Moolgavkar and Venzon (15) two-event model
when the number of normal susceptible cells remains
constant (16). We include this model in our survey of
time-dependent concentration effects because it is more
biological than pure multistage models due to its allow-
ance of differential growth, and because it may even-
tually serve as a starting point for introduction of acti-
vated oncogene effects. Furthermore, as we will apply
it, both normal and intermediate cells will be assumed
sensitive to the action of toxic agent, rendering the
cumulative incidence ratio R a function of tissue dose
and providing us with an extra dimension in which to
investigate time-dependent effects.
The mean equations for this model are

dNodt 0O

dN1Idt = X,No + kNj

dN2/dt = X2N1
where No is the constant number of normal susceptible
cells, N1 is the number ofintermediate cells with growth
rate constant k, N2 is the number oftransformed clones,
and Xi = ai + bi c(t). These equations may be integrated
to yield the probability, p2(t), that an individual cell will
become a cancerous clone at time t

- N2(t) = t kt -t ktN20t)==X2(t2)e 2JX1(tl)e ldtdt2 [8]

Alternatively, the probability P of there being at least
one tumorous clone in an individual at time t (cumulative
incidence) may be calculated as

P(t) = 1 - exp(-NOp2) [9]
The Equation 8 result contrasts with Equation 4
because of the additional exponential growth terms.
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For constant dosing co over the entire observation
interval [O,t],
P = 1 - exp[(qo + qlco + q2c )(1 + kt - ekt)] [10]

where qo = NOa1a2 I k2, q1 = (a1b2 + a2b1) No I k2, and
q2 = Nob1b2 / k2.
For time-dependent tissue dosing, we again consider

the square wave tissue dosing pattern where c(t) = co
over the interval s8 S t < s2 and is zero otherwise (Eq.
6). Integration of Equation 8 for this pattern and sub-
stitution into Equation 9 yields an expression, P[c(t)],
for cumulative incidence as a function of a time-depen-
dent concentration:

P[c(t)] = 1 - exp[ - NO(I1 + I2 + 13 + I4)]

I, = (a1a2/k)[(ekt - 1)/k - t]

0

12 = (b2a,cojk) (ekt - ekl)/k - t - s

(eks2 - eksl)/k - S2 + Sl
[0

I3 = (a2b1co/k) [ek(t-s1) - 1]/k - t + s
e-k(si+S2 - eksl]lk + s1 - S2

[0

14 = (bjb2c/k) e ksl(ekt - eksl)k + si - t

Ie-ksi(eks2 - eksl)lk + s - S2 [11]

and the entries in brackets correspond to t < sl, s,
S t < s2, and t ¢ S2, respectively.
We again demonstrate the magnitude of the time-

dependent concentration effect on cumulative incidence
by forming the ratio of P[c(t)] to its corresponding time-
averaged value, i.e., R of Equation 5. We evaluate R
for arsenical skin cancer and for the same early [0,0.33]
and late [0.67,1] one-third lifetime exposure periods
used before with the multistage model.
The results are shown in Table 1 for six administered

dose levels, since R remains a function of co when two
or more stages are carcinogen sensitive, as assumed in
this model. Parameter values were obtained by fitting
Equation 10 to the Tseng et al. data (10) (qo = 0, q1 =
0.0013 ppm-1, q2 = 0.0012 ppm-2, k = 0.071 yr-).
Because qo xa1a2 was zero, but q1 o a1b2 + a2b1 was
not, either a1 or a2 (but not both) was zero. The Tseng
et al. data could not discriminate between these pos-
sibilities and hence we considered both possibilities. The
clonal two-stage entries in Table 1 are for the case a1
= 0. The entries in the early and late columns switch
for the case a2 = 0.
The arsenic data of Table 1 show this model to be

about as maximally sensitive to time-dependent con-
centration effects as the multistage. For the data of
Table 1 (a1 = 0), the greatest divergence between time-
dependent and time-averaged response calculations oc-
curs when the dose approaches zero and when exposure
is late, the time-averaged response being 18-fold that

of the true response. This compares to 27-fold for the
pure multistage. (The same comparison holds when a2
= 0 except that the greatest divergence occurs for early
exposure.) The data also show that as the dose level
increases, the time-averaged response becomes a better
estimate, although it is still an order of magnitude in
error (11-fold) at the highest epidemiologic dose level
(1.2 ppm) reported by Tseng et al. (10). The R limit of
unity occurs at large doses for both early and late ex-
posures because these doses strongly affect both stages
of arsenic transformation and drive the responses com-
prising both numerator and denominator of R to 1, re-
gardless of the exposure pattern.

Time-Dependent Exposure Due to
Migration and Birth-Death: Effect on
Toxic Response Estimation
A special case of time-dependent dosage in the epi-

demiological setting involves the determination of ex-
posure periods by migration and birth-death patterns
of the exposed population. Because this is such a com-
mon circumstance in analyzing epidemiological data or
in estimating environmental risk, we next assess the
magnitude of effect that a typical human migration pat-
tern has on estimation of toxic response.

In essence, estimating the response of a human pop-
ulation to a toxic agent involves summing over the re-
sponses of each group of people who have been exposed
for the same length of time. Thus, if the residence time
distribution for this population can be ascertained, an
estimate of population toxic response may be made by
convolving the residence distribution with the proba-
bility of response for a particular residence time. We
therefore derive a residence time distribution for a sim-
ple population balance model, couple it to the multistage
dose-response model, and examine predicted population
toxic response as a function of migration rate. Oral ar-
senic exposure will again serve as a numerical example.
We see that for large migration rates and intermediate
exposure time sensitivities, neglect of migration and
birth-death effects typically leads to an order of mag-
nitude response error.

Population Balance Model
To keep the analysis simple, assume that the exposed

region is a small geographic area in which people are
exposed to toxic agent at a constant level co. At any
time, this region is characterized by a residence time
density function, n(t,t'), where t is chronological time
beginning from the time that toxic agent emission
started, t' is an individual's residence time during this
period of emission (t' < t,t), and n(t') is the number of
people at time t who have lived in the area for a length
of time between t' and t' + dt'. People who have just
moved into the area or were just born there will have
t' = 0, whereas others may have been there since emis-
sion began and will have t' = t.

If we assume that within the exposed population: (a)
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the rate of in-migration is independent of the local pop-
ulation density (zeroth order in-migration rate); (b) the
rate of out-migration is proportional to the local popu-
lation density (first order out-migration); and (c) birth-
death rates are first-order processes uncorrelated with
either chronological or residence times (age-residence
time correlation is ignored for this order of magnitude
assessment), then a simple population balance model
may be written as

dt att (X + A)n(t,t') [12]

subject to the boundary conditions that

n(t,0) = + yn(t,t')dt' = ,B + yN(t) [13]

n(O,t') = NOB(t') [14]

where is the out-migration rate constant, A is the
death rate constant, ,B is the in-migration rate, -y is the
birth rate constant, No is the initial number of people
in the region, 8(t') is the Dirac delta function, and N(t)
is the total number of people in the region at time t
(defined by the second equality in Eq. 13). Equation 12
states that the chronological time rate of change in the
number of individuals per residence time interval dt'
(left-hand term) equals the rate at which individuals age
into this interval less those who age out of it (first right-
hand term) less the number of individuals who die or
leave the area (second right-hand term). Equation 13
states that the flux of people just entering the region
at any time t, thus having a zero residence time, is equal
to the constant rate of in-migration (,B) plus the rate of
entry of newborns. Equation 14 merely states that the
number of people initially living in the area at the time
of emission start-up is No0 and that these people are all
characterized by a zero residence time at t = 0.

The model may be solved for n(t,t') by the method of
characteristics in two time domains, t', t, t' < t (17).
When birth and death rates are nearly equal, -y = 8 and
the residence time distribution is found to be

n(t,t') = NO5(t' - t)e-(X+Y)t + e-(x+Y)t'H(t - t')

{I + yNoe x(tt) + Y[1 e`t-t') }
[15]

where H(x) is the Heaviside operator.

Expression for Toxic Response in a
Migrating-Birthing-Dying Population
As described above, the population response at time

t, np(t), involves integrating over the toxic responses
induced in each residence time cohort, i.e.,

nt Jtnt ,t

np(t) =lP(t',t) n(t,t') dt' + llP(t',t")

(X + A) n(t",t') dt'dt"

where P(t',t) is the probability that an individual will
develop a toxic response over the exposure time t - t'
to t. The first integral accounts for the toxic cases
remaining in the locale, and the second accounts for
those cases which occurred in persons who died or
moved to other geographical areas. (This formulation
assumes that the toxic response itself is not fatal, as is
the case with arsenical skin cancer.) For the case of
constant dose rate in the geographical region and for
the multistage model applied to low dose arsenic expo-
sure, P(t',t) can be identified as the low dose limit of
Equation 4 with one stage dose-related,

P(t, t) = Acot k

where A is a grouped constant of ai's and bi's.
[17]

Magnitude of Migration Effect on

Response Estimate
To assess the magnitude of migration and birth-death

effects on response estimates, we determine the ratio
RM of the number of toxic cases in our geographical
region when migration is taken into account to the num-
ber of cases when it is not. We assume that at the
beginning of exposure, the region contains the steady
state number of people N88 = p / X. RM is thus

R np(t)N88P(t,t)
with np(t) given by Equation 16 and P(t,t) by Equation
17 with t' = t. After performing the integrations in
Equation 16, one finds that

RM = exp(-y) + (2 + y)y-kG(k + 1,y)
- y-kG(k + 2,y) [18]

where y = (A + -y)t and G(a,x) is the incomplete gamma
function

G(a,x) =fXta-1e -tdt

Next we evaluate RM for arsenic, whose k is 4, for a
typical human population birth death rate, X = 1.43%/
yr, and a range of out-migration rates X. Values chosen
for A were 1.4%/yr, 4.5%/yr, and 12.9%/yr. The obser-
vation period for toxic response has been taken as 30
years (rather than lifetime). No other parameters were
necessary since they cancelled out in forming the RM
ratio. The RM values are tabulated in Table 3.
The RM values in Table 3 show that unless migration

effects are taken into account, estimates of arsenic tox-
icity may be overpredicted by an order of magnitude at

Table 3. Ratio of toxic responses with and without migration-
birth-death included.a

Out-migration rate X, %/yr RM
1.4 0.61
4.6 0.36

12.9 0.11
aMultistage, k = 4.
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high migration rates and about threefold at more mod-
erate migration rates. Had the dependence of arsenic
toxicity on exposure time been much less, with k ap-
proaching unity, then RM would also have been closer
to 1 and migration effects would have become unim-
portant. Conversely, migration would have played a still
larger role for k values above 4. Finally, it should be
noted that these observations are quite general in that
they apply identically to any substance describable by
a Weibull dose-response relationship. This is suggested
by Equation 17, which is a special case of the low dose
Weibull A ctm 1. Had m not been 1, the same RM ratio
would have been obtained since cm would have cancelled
in the numerator and denominator.

Summary
Both time-dependent administration schedules and

pharmacokinetic transients have been identified as
sources of time-variant exposure, although, because of
their short time scale, pharmacokinetic transients (as
opposed to their steady states) are expected to play a
major role in risk estimation only for a limited number
of substances or in short-term assays. It has been shown
that, for one-hit and multihit models, rigorous estimates
of toxic response may be obtained from time-averaged
doses only. On the other hand, it was shown that the
multistage and clonal two-stage models generally re-
quire explicit treatment of time-dependent tissue con-
centrations (local dose) or else large errors may be en-
countered, depending on the exact dosage pattern and
the sensitivity of response to exposure time. For a sub-
stance, such as ethylene dibromide, which produces a
response strongly sensitive to exposure time, an order
of magnitude response error can be encountered even
when a two-thirds lifetime exposure is averaged over a
full lifetime. If arsenic is considered, a threefold error
is still encountered, although the response to this sub-
stance is two powers less dependent on exposure time.
It was also shown that the clonal two-stage model re-
quires treatment of concentration time dependency dur-
ing estimation of toxic response if errors similar to the
multistage are to be avoided. In addition, response er-
rors in this model were shown to be dose dependent
due to the assumption of two dose-related stages. Fi-
nally, the introduction of time-variant exposure in ep-
idemiological populations by migration and birth-death
dynamics was examined for the magnitude of its effect
on toxic response estimates. It was found that if these
dynamics were ignored and populations were assumed

static (a common assumption) overprediction of true re-
sponse occurs. Furthermore, this overprediction was
an order of magnitude for populations characterized by
average birth and death rates, out-migration rates in
excess of 5%/yr, and exposure to toxic agents with a
moderate sensitivity of response to exposure time (e.g.,
those with a Weibull time-to-response exponent : 4).
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